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1 Introduction 
 
OSDL CGL WG specifies that Carrier-Grade Linux 2.0 shall provide a very 
efficient capability for handling asynchronous events. 
     CGL need to have an efficient mechanism that provides the Linux kernel 
with advanced carrier-grade capabilities. The motivation for the asynchronous 
event mechanism is to enforce the system scalability and soft real-time 
responsiveness by reducing contentions appearing at the kernel level 
especially under high load. 
     In this document we associated priorities with requirements. The reason to 
push some requirements to CGL 3.0 is that the implementation might require 
a rework and the APIs might be changing. Also, some items pushed to priority 
2 imply tight cooperation with the process scheduler: 
 

• Priority 1 - CGL 2.0 
• Priority 2 - CGL 3.0 

 

2 Description 
 
The purpose of this document is to describe the requirements for an efficient 
implementation of an asynchronous event mechanism. 
     The following sections describe AEM (The Linux Asynchronous Event 
Mechanism) [aem], which is a kernel implementation for the management of 
asynchronous system events in complex software architectures especially in 
the context of Telecom applications. 
     Carrier-grade systems are facing severe conditions of execution and all 
kind of hazards. In many common situations these platforms have to handle 
thousands of transactions per second, hundred simultaneous connections per 
node while taking care of databases containing millions of entries. The 
downtime of such systems should not exceed 5 minutes per year, comprising 
software upgrade, operations and maintenance and hardware failures. Also 
the response time should be kept in an acceptable range of some few 
seconds even under high load. An efficient mechanism is then necessary to 
dispatch low-level events to applications.  
     Traditional dispatch mechanisms, which either implement (based on a 
multithreaded architecture) or partially provide (like AIO, epoll) a kind of 
event-driven paradigm, fail to satisfy telecom requirements in these 
conditions. They basically partially solve the problem behind event 
management, because both the notification and the delivery of information is 
a critical function of the system under a variable load. In [faq] we provide a 
functional comparison between AEM, AIO, select and epoll. Basically AEM is 
meant to be complementary to those existing systems by providing a support 
for the asynchronous execution of handlers related to low-level events. 
   It is important that system resources are uniformly distributed between 
applications. Resource greedy applications could easily create delays or 
points of failure in a node because they implement their own dispatch 
mechanism. This is also a question of reliability and security. This is why it is 



necessary to provide a generic support for event management directly in the 
Linux kernel that is usable by all applications and more controllable by the 
kernel. 
   AEM aims at implementing kernel components that scale linearly with the 
number of events while providing good response time to applications. It 
basically provides a notification mechanism and completion of event data 
directly to application handlers. 
   AEM focuses on implementing a native support to interrupt-driven software 
components like network protocols or event driven software like the X 
windows system, Corba or TIPC. More precisely, AEM aims at reducing 
complexity of multi-layer software architectures or applications that require a 
high level of con- 
currency between components. Some of its characteristics are: 
 

• Uses a new object as event references (not descriptors), 
• Is not restricted to file and socket descriptors, 
• Implements sporadic or periodic events monitoring, 
• Makes use of priority enforcement, 
• Manage memory on behalf of processes, 
• Can execute handlers in the same execution context or in a new 

process context, 
• Provides routines to stop/start or shutdown events explicitly. 

 
AEM belongs to a group of applications providing asynchronous execution of 
processes. Other kinds of similar mechanisms are the x-kernel, active 
messages or even the Microsoft IOCP. It provides basic building blocks to 
build a higher level asynchronous interface. AEM is not limited to socket 
operations and network protocols. It is possible to implement callbacks for 
overload notifications or for whatever critical events. Of course, even if it is a 
generic and very flexible, the support in the kernel must be given for all 
events. 
   In a carrier-grade context, computing nodes should also be secured to limit 
the number of events or restrict the type of events applications can register. 
AEM can be improved with specific algorithms to provide QoS or load control 
at the process level, which would be complex to put in place otherwise. 
 

2.1 The event-driven model 
 
The purpose of this section is not to be exhaustive, but to simply illustrate the 
difference between a blocking system call and an event-driven mechanism 
during the execution of an application. The example we have in mind is a 
simple application using networking functions like read, select or accept. 
 

2.1.1 Synchronous interface 
 
Figure 1 illustrates a typical blocking system call. During the system call 
phase in 1) the process enters a sleeping state 2). This state is periodic as 
illustrated in 3) and the process can either oscillate between a  sleeping state 



and a running state or stay sleeping until it is awaken by the underlying 
subsystem. During this period of time, which can be undetermined, the 
application is simply frozen until the corresponding event occurs to wake it up.  
   It is important to note that the application must be aware of the number of 
file descriptors to listen to in the case of the select. This is an important 
limitation because is forces to really plan and design the application in 
advance or to set it to the maximum available by the system resources. This 
last solution increases the response time when using select(). 
 
 

2.1.2 Event-driven interface 
 
Figure 2 illustrates the behavior of an application using AEM. Event 
registration in 1) is a necessary step an application has to issue prior in order 
to handle an event via the corresponding event handler. This later must be 
exist for that purpose. The goal is to fill internal structures with information 
provided by the application like the address of the event handler. Once the 
event is registered the application can execute in 2) without interruption or 
without waiting explicitly for this event. Once an event has been detected and 
activated in 3), the handler will be executed soon. This occurs when returning 
from any system call (there is currently no 
 
 
                                           

 
 

Figure 1: Operating system layers view of a synchronous interface. 
 
 
restriction regarding the type of system call allowed to precede the execution 
of an event handler). A context-switch is then performed and the handler is 
executed in 4). The application is resumed in 5) when the handler exits. 



   There is one point regarding AEM that compares advantageously to the 
previous example we illustrated with select. There is no restriction or explicitly 
limitation on the number of sockets to listen to; basically because there is no 
equivalent to select at all. As long as the event is not disabled by the 
application it will continue to execute the event handler. 
   In the case of an event-driven scheme, the accept system call is a non-
blocking operation as we illustrated in the next example. This scheme allows 
the application to continue execution and accept incoming connections 
asynchronously without any disturbance. 
 

 
 

Figure 2: Operating system layers view of an event-driven interface. 

2.1.3 Example of an event-driven server 
 
The following example illustrates the part of an asynchronous server 
performing the accept of incoming connections. In this example, the 
procedure is executed in the same thread of execution. Once registered the 
server is kept alive. When a connection is coming in the handler of accept is 
executed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1.4 Note on transparency 
 
As opposed to other mechanisms, applications are not required to use AEM 
exclusively. Also AEM will not disturb applications that use it partially (the 
synchronous model inside the asynchronous model). The goal is to provide 
both in the same time. This is possible because AEM makes use of different 
internal mechanisms which are not used by other solutions. For example, 
applications can take benefit of select inside event handlers. 
 

 
/* 
 * This event handler is executed upon connection. 
 */ 
void accepted (int jid, int old_sockfd, int new_sockfd) 
{ 
     /* handle accept */ 
} 
 
 
main () 
{ 
     int sfd; 
     int err; 
     int c_len; 
     struct sockaddr_in s_addr; 
 
     c_len = sizeof (c_addr); 
 
     if ((sfd = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0) { 
           perror (""); 
           exit (1); 
     } 
 
     bzero ((char *)&s_addr, sizeof (s_addr)); 
     s_addr.sin_family             = AF_INET; 
     s_addr.sin_addr.s_addr = inet_addr (SERVER_ADDR); 
     s_addr.sin_port               = htons (SERVER_PORT); 
 
 
     if (bind (sfd, (struct sockaddr_in *)&s_addr, sizeof (s_addr)) < 0) { 
          perror (""); 
          exit (1); 
     } 
 
     listen (sfd, 5); 
 
     /* Event registration for accept - non blocking system call */ 
     id = sockasync_accept (sfd, (struct sockaddr *)&c_addr, &c_len, 
                                   0, accepted); 
     if (id<0) { 
          perror (""); 
          exit (1); 
     } 
 
     enter_keepalive (); 
} 
 



2.2 Scalability 
 
Scalability is achieved by ensuring that all sub-components used by the 
applications are executed in a time-bounded interval in the worst case. In this 
situation, kernel components must be able to handle variations of the 
workload linearly. 
     AEM provides a fine-grained implementation of event activation points 
using a mechanism similar to wait-queues for processes. This ensures that 
only active events consume system resources. Most applications based on a 
multi-threading architecture need a lot of threads to handle system events. 
AEM provides a native event-driven methodology, which prevents from 
introducing a bottleneck at the scheduler level. To achieve this it introduces a 
kernel processing element called job that takes care of events prior to 
execute related handlers. These elements are developed specifically to 
answer the need of one type of event. In particular they can aggregate or not 
multiple arrivals of the same event and they are active only 
when awaken by the corresponding events. 
   Scalability must be a linear function of the number of events and the latency 
for the execution of one event handler. 
[TODO: Figures of scalability, Figures of latency, ] 
 

2.3 Soft real-time 
 
Soft real-time characteristic defines a system that is able to meet its deadlines 
statistically. Priorities can be set during event registration in such a way that 
this interval (response time latency) varies with event priorities. An application 
that is about to receive an event of high priority must be able to receive it 
before any other processes. This implies a global management of events and 
a cooperative kernel mechanism. 
   The need for such a mechanism comes from the fact that we need to 
bypass a significant section in the kernel and invoke directly a user thread 
with the appropriate data to go and handle the event. But in order to maintain 
a soft-real time execution profile we need to create a tight relationship or an 
affinity between 
a process and its events. In this case, communications between the kernel 
level and the user level is reduced to execute event handlers inside 
applications context. 
This is motivated by the fact that the latency time between a notification sent 
by the kernel and the effective execution of the corresponding action by the 
process is not/badly controllable by other mechanisms. 
   Memory allocation on behalf on processes is a critical part of event 
management. Generic memory managers have always been a problem for 
applications close to real-time requirements. Patterns of allocations become 
persistent as a system is up and running provoking shortage of memory for 
some specific block sizes and aggravating the system latency. For this reason 
AEM implements a per process memory management that insures fast 
memory availability to store event information. The memory manager, 
vmtable, handles pools of memory using a buddy algorithm adapted for this 
purpose. 



   Also, AEM aims at putting more pressure on processes (or execution 
agents). A process priority-driven mechanism solves many problems. In 
particular it permits to apply directly (to a certain extent since most 
applications run in user space) some of the concepts already developed for 
hard real-time systems. This is achieved in AEM by modifying dynamically 
process priorities according to pending events priorities. 
 

2.4    Reliability 
 
Reliability is the capability of a system to resist against errors, hazards and 
faults. Failures due to shortage of resources or faults happening while serving 
a request are not rare and must be handled carefully. 
    Asynchronous execution of processes brings lot of complexity from a 
computational point of view. Software synchronizations and locks of critical 
sections mainly cause this increase of complexity. Architectures based on 
multi-threads usually take care of synchronizing and protecting shared data to 
the extent of increasing the space complexity of the overall software. This 
kind of architecture self-encodes the state of the software in the form of a 
global state machine, for which threads are the functions that represents the 
transitions between those states. Bringing a small modification to the 
applications require also updating the underlying state machine mechanism, 
that is the all logic of the software. This kind of architecture clearly increases 
the space complexity of software and the time of development. Also 
modifications brought into an existing source code increase the chance of 
introducing new points of failure. 
    In a carrier-grade environment it is almost impossible to rely on this kind of 
architecture. For example, software upgrades don't necessarily imply upgrade 
of the all system or upgrade of all the running applications. These applications 
should be flexible enough and distributed in their design and their 
implementation to be upgraded process by process in order to satisfy the 
99.999% uptime. 
    AEM brings this flexibility to software and reduces their space complexity 
especially in the case of multi-layer software architectures. It provides inside 
the kernel a generic framework to handle system events and dispatch them to 
the applications that did the registrations with only slight adaptations (event 
registrations). 
    Also, resource greedy applications could create a bottleneck or increase 
vulnerabilities of a node. AEM is centralized as a part of the Linux kernel and 
is able to control and restrict resource usage.  
    Handling of errors is quite important to provide reliability to carrier-grade 
systems. For example shortage of critical resources like memory must be 
handled carefully without killing the transactions or the applications. AEM tries 
to be as  reliable as possible while serving processes and tries to guaranty 
the execution of event handlers even in case of internal errors as much as 
possible. For example, AEM always falls back onto the applications' decision 
when memory is not available for event handlers. 
 
 



2.5 Performance 
 
AEM targets performance in term of throughput and response time either in 
the case of streaming or transactional applications. Improving throughput or 
response time is a matter of scheduling and resource management.  
    In order to try to achieve performance for wide types of applications, AEM 
implements the job processing elements, executing in the kernel on behalf on 
processes. A job is the latest element in the chain responsible for activating 
the execution of event handlers. It is executed with a very small latency from 
wait queues or by the job dispatcher. Since it can be executing sporadically or 
periodically a job is well adapted for many types of applications. 
    Performance at the scheduling level is achieved by enforcing process 
priorities creating a tight affinity between a process and its events. A priority is 
associated to events during registrations and the scheduler uses this priority 
to make decisions. When an event is activated the corresponding process 
priority is raised according to the event's priority. 
    AEM implements a direct data copy mechanism when event handlers are 
to be executed in a new process. Direct data copy is necessary to prevent 
extra buffering in the kernel, which tends to aggravate resource consumption 
and penalize performance. This is achieved via the vmtable memory 
manager, which provides routines to transparently manipulate memory 
located in another process context. This is particularly useful in the case of 
network transactions that have to be received inside another process context. 
 

2.6 Portability 
 
Portability of applications is the main advantage behind an event driven 
methodology. The intermediate layer that is used to supply the management 
of events and that is usually built up from on a multi-threaded architecture is 
no more necessary since the operating system kernel provides a native 
support. 
    Cross-platform portability is not really an issue here since OSDL CGL is 
running Linux, but a standard API would really be a benefit to ease port of 
applications to other operating systems. 
 

3 Requirements 
 

3.1 Application Programming Interface 
 

3.1.1 Event registration 
 
Registration must be done by the application in order to receive notification of 
events. A unique identifier is returned to the application upon registration if 
successful otherwise a standard error value. It is possible to register an event 
more than once, for the same event handler with the same priority. It is then 
up to the 



event data completion mechanism to maintain the coherence. 
     There should not be no restriction regarding multiple registrations of the 
same event to execute different handlers. Although it can depend on an event 
type basis if this is possible. 
     Priority 1 
 
 

3.1.2 Handlers API 
 
All events handlers should provide their own parameter list but follow the 
same API scheme. Event data completion is achieved by supplying event 
handlers with all the required information in the parameter list of the user 
space callbacks. We mean by required information what is necessary to 
reference the event structures. 
     Priority 1 
 

3.1.3 Existence of handlers 
 
Event handlers must be defined by the applications for all of the required 
events. 
     Priority 1 
 
 

3.1.4 Event identifier 
 
An identifier is returned as a result of a registration or a standard error value 
in case of failure. This identifier is directly or indirectly usable by an 
application for accessing the structure describing the registered event. 
     Priority 1 
 

3.1.5 Event priority 
 
User processes can set a priority during registration. This represents the 
priority given to a particular registration and not the the event itself. It defines 
how fast the event handler should be executed on a global (scheduler) scope 
once activated. Priority is optional and a default one is assigned otherwise. 
Priorities can be set during or modify after event registration. 
   Priority 2 
 
 

3.1.6 Executor agents 
 
Event handlers can run inside the same context or a copy of the context of 
the original process. In either way, it is up to user processes to define this 
option during registration. 



   Priority 1 
 

3.1.7 Low level control API 
 
Primitives to enable, disable, filter, lookup, set time-out, clean events are 
provided through a system call for allowing a single thread to deal with them. 
Event registration returns a unique identifier as a reference for that purpose. 
The implementation should allow a user process to interact with the event 
subsystem unless 
restrictions apply for other reasons (security, resource limit...) 
   Priority 1 
 
 

3.2 Soft real-time 

3.2.1 Event priority 
 
A priority can be set during or after event registration. This priority should 
guaranty a fixed latency between event activation and the execution of the 
corresponding event handler [orders are to be defined]. 
   Priority 2 
 
 

3.2.2 Process priority enforcement 
 
Process priority should be changed according to priorities of pending events 
[the algorithm to use is left to the implementation]. 
   Priority 2 
 

3.2.3 Direct process invocation 
 
An asynchronous event mechanism performs direct invocation of execution 
agents (handlers) with the data for the events in parameters. An execution 
agent can be a process, a thread or a function (entry point) in the current 
execution context. 
   Priority 1 
 

3.3 Scalability 
 

3.3.1 Event system 
 
Scalability is achieved by ensuring that all sub-components of the event 
subsystem are executed in a time-bounded interval in the worst case. 
Scalability cannot be ensure when blocking routines are used (select()...). 



   Priority 1 
 

3.4 Performance 
 

3.4.1 Event data completion 
 
When an event handler requires memory allocation for event data completion, 
this is handled inside the kernel on behalf of processes. No intervention from 
user processes should be required to either allocate memory or to free this 
memory.   An application should be able to use its own memory allocation 
scheme. 
   Priority 1 
 

3.4.2 Direct Data Copy 
 
Event data completion raises a problem when the executor agent type is a 
process. In that case the completion is happening in the parent process 
context whereas it should be reported in the child process context. In order to 
keep good performance of event handlers' execution, a direct data copy 
mechanism should be employed when building child process parameters. 
   This mechanism should be flexible to take benefits of some of the kernel 
facilities improving performance [like DIRECT IO]. 
   Priority 1 
  

3.5 Reliability 
 

3.5.1 Guaranty of delivery 
 
All activated events should guaranty to trigger their corresponding executor 
agent. No event should be dropped. Multiple occurrences should be managed 
internally. 
   Priority 1 
 

3.5.2 Error handling 
 
An application must be able to handle errors occurring in the event subsystem 
(like shortage of memory) while fetching data. Notification should be done in 
these cases and it should be left to the application to decide what to do. 
   Priority 1 
 

3.5.3 Security 
 
Security procedure could be set to control the following items: 



 
• Types of system calls that can (or cannot) be executed prior running a 

handler, 
• Type of events an application can register, 
• Type of executor agents 

     Priority 2 

3.5.4 Resource limit 
 
Limits should be set on the following items: 
 

• Number of events registered 
• Number of simultaneous event activated 
• Type of events 
• Type of executor agents 

     Priority 2 

3.6 General behavior 
 

3.6.1 Queuing 
 
Events need to be queued as they arrive in the system until the 
corresponding event handlers are executed. For that matter, it is performed 
for each process by the event mechanism if the controlled objects cannot pro 
vide queuing. 
     Priority 1 
 

3.6.2 Atomicity 
 
Only one event handler should be executed at a time in the same execution 
context. 
     Priority 1 
 

3.6.3 Timers and periodic events 
 
Should provide timers and periodic event monitoring. 
     Priority 1 
 

3.6.4 Inheritance 
 
A forked process can either inherit its parent list of events or start from a new 
fresh list. This is to conform to the semantics of forked processes. 
     Priority 2 
 



3.6.5 Event dispatching 
 
Dispatching of the same event data to different event handlers should be 
possible. This mainly depends on the underlying system to which events 
belong [i.e. TCP stack]. Otherwise it can be left to handlers to perform their 
own dispatching [scalability issue here???]. 
     Priority 2 
 

4 Supported Interfaces 
 
[This section describes the supported interface either towards the user or 
towards the kernel implemented in AEM. This interface is flexible and is going 
to change in the kernel 2.6. One of the reasons is because it consumes many 
system calls entries. I propose to have a system call entry per family of 
functions. For example, sockasync() for the network, evtimer() for timers, 
fsasync() for file systems.] 
 

4.1 Control functions 
 

• [int] evctl ([int] job identification, [uint] operation, [ulong] arguments) 
 
 
Control function. Used to control jobs and events related structures from user 
space. It returns 0 or a positive value on success, a negative value upon 
error. 
 

• [void] enter keepalive ([void]) 
 
Enters an infinite loop in the kernel. Exits when it receives a signal. 
 
 

4.2 Network API 
 
These functions return an event identifier or a negative value upon error. 
 

• [int] sockasync accept (<same as accept>, [ulong] flags for handler, 
[ulong] handler) 

 
Creates an asynchronous event for the TCP accept method. 
 

• [int] sockasync read( [int] socket fd, [ulong] flags for handler, [ulong[ 
handler) 

 
Creates an asynchronous event for reading data on a socket. 
 

• [int] sockasync close([int] socket fd, [ulong] flags for handler, [ulong] 
handler) 



 
Creates an asynchronous event for the close operation on a socket. 
 

• [int] sockasync sk ([int] socket fd, [ulong] flags for handler, [ulong] 
handler) 

 
Creates an asynchronous event to monitor TCP DFA states for a socket. 
 

• [int] sockasync sock ([int] socket fd, [ulong] flags for handler, [ulong] 
handler) 

 
Creates an asynchronous event to monitor a socket state. 
 

4.3 Timer API 
 
This function returns an event identifier or a negative value upon error. 
 

• [int] evtimer ([struct timespec] timer interval, [struct timespec] timer 
period, [uint] flags, ([ulong] han       dler,) 

 
Creates a periodic timer. 
 

5 References 
 
[aem] AEM - The Linux Asynchronous Event Mechanism Home Page,        
http://sourceforge.net/projects/aem/  and http://aem.sourceforge.net/. 
 
[faq] AEM - FAQ,  available at http://sourceforge.net/projects/aem/ and 
http://aem.sourceforge.net/. 
 
 


