
June 25, 2002 Ericsson Research Canada

Asynchronous Events
on Linux

Frederic.Rossi@Ericsson.CA

Open System Lab
Systems Research

mailto:Frederic.Rossi@Ericsson.CA
mailto:Frederic.Rossi@Ericsson.CA

June 25, 2002 2 Ericsson Research Canada

Introduction

Linux performs well as a general purpose OS but doesn’t satisfy most of Telecom
requirements.

Server platform operating systems must be:
• Linearly scalable,
• Have non-stop operations,
• Have soft real-time responsiveness.

⇒ Look at standard mechanisms

June 25, 2002 3 Ericsson Research Canada

Introduction

Problems with the standard mechanisms
• Scalability:

• select() and poll() are O(n) interfaces,
• SIGIO requires de-multiplexing in O(n),

• Soft real-time responsiveness:
• Real-time signals have fixed priorities,
• RT signal priorities cannot be used to increase responsiveness,

• Reliability:
• RT signals and signals cannot live in the same world: order is not

guaranteed,
• Signal delivery is guaranteed but not the number of signal delivered,
• Latency of signal delivery.

June 25, 2002 4 Ericsson Research Canada

Introduction

Problems with the standard mechanisms

• Multi-threading
• Standard mechanisms implies the use of multi-threading to handle

multiple simultaneous connections,
• Requires locking mechanisms for concurrency,
• Increases scheduling latency,
• Resources consumer: 1 thread per connection,
• Difficult to port, to maintain. [threads] Implementation dependant,
• Many libraries are not thread-safe,
• Thread implementation is changing.

June 25, 2002 5 Ericsson Research Canada

Introduction

Alternative mechanism

• Event-driven mechanisms:
• One event per resource in input (socket, file, load, number of tasks…),
• Registration for interests in some events. No specific software

architecture is required,
• Easier to program. Just provide call-backs for event handlers,
• Used whenever concurrency between data is not needed,
• Handlers for events are executed asynchronously,

June 25, 2002 6 Ericsson Research Canada

Event-driven mechanisms

Asynchronous execution
• Handlers are executed
asynchronously,

• This mechanism consumes no
kernel resources, no CPU time.

Kernel

User

Polling Processes

Jobs

Traditional
notification

Asynchronous
activation

Spawned processes

Event Events

Synchronous vs. Asynchronous Execution

June 25, 2002 7 Ericsson Research Canada

Event-driven mechanisms

Existing asynchronous mechanisms

Microsoft I/O completion port (IOCP):
→ Completion ports are associated with descriptors,
→ Use of threads to wait for completion,
→ Applications are provided functions to get I/O completion packets from the IOCP,
→ Must provide a valid pointer and length to data location.

POSIX Asynchronous I/O (AIO):
→ Notify user processes upon completion of some operations,
→ Use of signals to notify users. Can use RT signals to take benefits of their priorities,
→ Works on (file, socket) descriptors,
→ Provides IOCP with RT signals. User processes must provide valid pointers to data

location.

June 25, 2002 8 Ericsson Research Canada

Event-driven mechanisms

Existing asynchronous mechanisms
Microsoft I/O completion port (IOCP):
→ Not Linux !!

POSIX Asynchronous I/O (AIO):
→ Not yet supported on Linux, not fully supported by other Unix!
→ Problems:

• Event completion is not transparent,
• Restricted to stream descriptors,
• Scalability,
• Soft real-time responsiveness.

⇒ Our solution: the asynchronous event mechanism (AEM)

June 25, 2002 9 Ericsson Research Canada

Asynchronous Event Mechanism
Architecture overview

General features
⇒ It’s a Linux kernel enhancement,
⇒ Provides an event-driven methodology of development
⇒ Scalability and soft real-time responsiveness!

Events

User

Jobs

Spawned processes

kernel

⇒ No multithreading; Executes user land call-backs
from kernel space,
⇒ User processes request interest in some events,
and then do something else; Non blocking
mechanism,
⇒ Event loops are per process and handled from the
kernel,
⇒ User call-backs are executed by context-switching
the current process.

June 25, 2002 10 Ericsson Research Canada

Asynchronous Event Mechanism

Architecture overview

Technical features
⇒ A set of new system calls for event registration,

⇒ An event is an object in the system that is monitored
periodically or awaiting for a change of state.

⇒ Some Jobs run at the level of interrupt handlers
attached to some process to monitor events,

⇒ Example of events: asynchronous read on sockets,
timers…

Unix
process

Unix
process

Job Job Job

main ()

Eve
nt

Eve
nt

Eve
nt

June 25, 2002 11 Ericsson Research Canada

Jobs

Overview

• Jobs are processing elements
executing inside the kernel at (soft)
interrupt time,

• Light mechanism ; provide no
execution context as opposed to
processes or threads,

• Fast mechanism; jobs are high-
frequency entities,

• Perfectly serialized ; a job run until
completion before another one is
executed,

• Benefit of SMP architecture ; jobs can
execute in parallel,

⇒ Jobs are used for event activation

June 25, 2002 12 Ericsson Research Canada

Reactive jobs
• These are jobs used to
wait for some event,
• Explicitly awaken by the
underlying
implementation,
• Are not scheduled in
order to reduce latency
time of handler execution.

Jobs States

RunningReady

Suspended
Block

Suspended
Unblock

Lock

Job_wake_up()

Job_lock()
Job_unlock()

Job_suspend_interruptible()

Job_enable()

Job_disable()

Job state automaton

Periodic jobs
• These are jobs used to periodically lookup for
event,
• Inserted by the dispatcher into the scheduler
queue,
• Are defined by a frequency and a timeout values,
• Timers are based on periodic jobs.

June 25, 2002 13 Ericsson Research Canada

Jobs Scheduling

Job dispatcher
• Handle periodic jobs,
• Jobs are assigned an age
spent in the queue,
• When a job’s age reaches 0
then it becomes ready to
execute,
• Insert ready to execute jobs
into the scheduler queue.

Job scheduling

Job scheduler
• Update jobs’ state
according to the
automaton’s rule…
• Then execute the
job,
• Jobs execute in
parallel on SMP.

I/O job 1

I/O job 2
Job
Scheduler

DB job

TCP job

Job
Dispatcher

June 25, 2002 14 Ericsson Research Canada

Events

Overview
• An event defines the execution
context for a user land handler and a
job,
• An event defines its relationship with
other events (sibling, child, parent),
• A list of active events is maintained
for each process,
• Active events for scheduled
processes are checked during each
clock tick.

• When an event is activated the
corresponding handler is executed,

• Scalable! no single thread of control and
fine grained mechanism.

List of events per process

Process Event chain

I/O job DB job TCP job

Active events

June 25, 2002 15 Ericsson Research Canada

Events

Event created processes
• New processes are created by
event activations,

• Each process implements a
resource container to handle event
related data (jobs, handler
arguments…),

• When creating a new process the
parent can be told to not wait for its
child when it exists.

DB job

Process
Event chain

I/O job

Event chain

Child
process

Event created
Process

User level Kernel level

TCP job DB job

Event Handler execution

June 25, 2002 16 Ericsson Research Canada

Events

Two event handler types
• Handlers can either be serialized like signals or be forked processes,

Process Process Process’

Event 1 Event 2

Process Handler1 Handler2

Event 1 Event 2

Forked event handlers Serialized event handlers

June 25, 2002 17 Ericsson Research Canada

Memory Management

Motivation

• In the POSIX definition for AIO a valid pointer must be provided by the
application,

• In AEM we manage user process memory from inside the kernel. No need to
pre-allocate memory from applications. This is handled at the time call-backs
are executed,

⇒ This pool can be used as a resource container for event related data.

June 25, 2002 18 Ericsson Research Canada

Memory Management

Motivation
We implemented a specific buddy allocator in order to:

→ Prevent memory fragmentation, swapping and page faulting caused by
successive allocations,

→ Encourage reuse of memory locations,
→ Allocate quickly,
→ No waste of resource. Memory space is requested when event handlers are

executed,
→ Provides fine grained blocks of different size for the applications,
→ Provides big blocks to be used as pools,
→ The size of blocks fits with the event requests,
→ Can use mapping of user memory or direct copy to prevent a time consuming

copy of data.

June 25, 2002 19 Ericsson Research Canada

Scalability

Fine grained mechanism
• No list of port to scan (select() is
linear in the number of fd)

• Event data completion; no need to
lookup for information (like for
SIGIO)

No single thread of control !

I/O job 1

Job
Scheduler

DB job

I/O job 2
TCP job

June 25, 2002 20 Ericsson Research Canada

Soft real-time responsiveness

Soft pre-emption
• We use event priorities to increase process weights,

• So that it influences scheduling decision regarding process
selection,

and
⇒ weight (P) = srt_base + srt_priority (P)

⇒ srt_priority (P) = prioritieseventactivated
P
∑

for a process P:

⇒ Load control problem…

June 25, 2002 21 Ericsson Research Canada

Soft real-time responsiveness

Load control
• It is based on the total number
of event handlers executed in
the system during the last
second,

• The load is the number of
estimated events per process
per time slice,

• All processes are influenced
equally. 








⋅∑

∑

now

secondelapsed

tasksHz

events
⇒ load =

and calc_decay (load) is the proportional increase
of the load, cste is the maximum allowed,

global estimation of event load,
⇒ srt_base = max [0, cste – calc_decay (load)],

srt_priority () < srt_priority () ⇒ weight () < weight (),2P1P 1P 2P

Thus conservation of order is insured in the same time interval,

June 25, 2002 22 Ericsson Research Canada

Soft real-time responsiveness

Process time slice allocation
• It is computed when selected for the first time,

• Its allocated quantum of execution is proportional
to its number of events,

• So that it gives a chance to other processes,

• Small quantum time values are allocated to event
handlers to improve responsiveness (≤ 20 ms).

()[]
cste

cstePweight ,min
⇒ time_slice (P) =

for a process P:

June 25, 2002 23 Ericsson Research Canada

Interface

Actual AEM user interface
• Socket interface,

• Timer interface,

• Control functions.

eventdesc_t request (handler_t handler, unsigned long evflags,,,)

•ret is an event descriptor if the request is successful,

•ret is negative if an error occurred.

evflags tells how the handler is going to be executed:

•EVF_ONESHOT

•EVF_FORK

•EVF_NOCLDWAIT

void handler (eventdesc_t ed,,,)

June 25, 2002 24 Ericsson Research Canada

Interface

Socket interface

main ()

{

int sfd = socket (…);

bind (sfd,…); listen (sfd,…);

id = sockasync_accept (h_accept, 0, sfd);

while (1);

}

void h_accept (jid_t id, int sfd, int nfd)
{

id = sockasync_read (h_read,
EVF_FORK|EVF_CLDNOWAIT, nfd);

….
id = sockasync_close (h_close, EVF_ONESHOT, nfd);

}

void h_read (jid_t id, int fd, char *data, int len)

{ … }

void h_close (jid_t id, int fd)

{ … }

June 25, 2002 25 Ericsson Research Canada

Interface

Socket interface

id = sockasync_sk (h_sk_state, EVF_FORK, sfd, TCP_ESTABLISHED);
id = sockasync_sock (h_sock_state, 0, sfd, SS_CONNECTED);

void h_sk_state (jid_t id, int fd, int state)

{ … }

void h_sock_state (jid_t id, int fd, int state)

{ … }

June 25, 2002 26 Ericsson Research Canada

Interface

Timer interface
• Based on the implementation of periodic jobs,

• Must be provided with an interval and an optional period.

main ()
{

struct timespec interv;

interv.tv_sec = 1;
interv.tv_nsec = 0;

evtimer (h_timer,0,&interv,
NULL,);

while (1);
}

void h_timer (int id, struct timespec to)
{

printf ("Timer event desc. %d: %us: %uns\n",
ed, to.tv_sec, to.tv_nsec);

}

June 25, 2002 27 Ericsson Research Canada

Interface

Control function
• Control function: evctl,

• Somewhat equivalent to ioctl,

• Controls event properties from the application.

int id = sockasync_sk (h_connected, EVF_ONESHOT, sfd, TCP_ESTABLISHED);
if (id<0) {

perror ("sender sockasync: ");
exit (1);

}

evctl (id, EVJOBPRIO, JOB_HIGH);

Control flag Argument
pointer/value

Event Id

June 25, 2002 28 Ericsson Research Canada

Performance

Context-switch
measurement
• Purpose is to run the AEM at
full speed for the worst case,

• One opened socket,

• 50,000 ping-pong messages
between two remote processes,

• Size of messages vary
between 2 and 65536 bytes,

• Client is synchronous in both
cases,

• Server is asynchronous with
serialized event handlers. Not
forked.

June 25, 2002 29 Ericsson Research Canada

Performance

Context-switch
measurement

• Same graph for messages between 2 and
256 bytes with a larger scale.

June 25, 2002 30 Ericsson Research Canada

Performance

Context-switch
measurement

• Same graph for messages between 2 and
65536 bytes with a larger scale.

June 25, 2002 31 Ericsson Research Canada

Conclusion

• New model in the Unix world,

• Implemented in the Linux kernel 2.4.6,

• Ensure scalability,

• Ensure soft real-time responsiveness,

• Provide a secure event-driven interface to Linux for the development of
highly available applications,

• Flexible: expandable with new system calls,

June 25, 2002 32 Ericsson Research Canada

Thank you for your attention !

	Asynchronous Eventson Linux
	Introduction
	Introduction
	Introduction
	Introduction
	Event-driven mechanisms
	Event-driven mechanisms
	Event-driven mechanisms
	Asynchronous Event Mechanism
	Asynchronous Event Mechanism
	Jobs
	Jobs States
	Jobs Scheduling
	Events
	Events
	Events
	Memory Management
	Memory Management
	Scalability
	Soft real-time responsiveness
	Soft real-time responsiveness
	Soft real-time responsiveness
	Interface
	Interface
	Interface
	Interface
	Interface
	Performance
	Performance
	Performance
	Conclusion

